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I. INTRODUCTION 

 

1.1. Changes in the Approach to Maintenance 

The introduction of new types of warfare and the rapid 

development of advanced scientific and military technology 

have complicated and refined the functions and performance 

of modern weapon systems. Thus, conventional military 

support cannot guarantee the effective operation and 

maintenance of weapon systems [1]. As a result, a number 

of countries, including the United States, are actively 

pushing for the implementation of total life-cycle systems 

management (TLCSM) when acquiring new weapons 

systems to maximize their operational availability and 

minimize the total cost of ownership. In particular, it is 

necessary to minimize equipment downtime and maximize 

operational availability during its sustainment phase by 

avoiding unplanned maintenance tasks and ineffective 

preventive maintenance, reducing maintenance costs through 

accurate fault detection and time-saving maintenance, and 

optimizing the spare parts inventory using provision 

forecasting [2, 3]. 

In this respect, modern maintenance policies have undergone 

significant change. Maintenance can be performed using a 

wide variety of approaches, though the two main categories 

of maintenance−reactive and proactive−describe the full 

range of options available. Reactive maintenance is conducted 

on items that are planned to run to failure or that fail in an 

unplanned or unscheduled manner and restores the item to 

a serviceable condition after the failure has occurred. An 

item may be on a periodic maintenance schedule, but if it 

fails prematurely, it will require maintenance immediately. 

Reactive maintenance of a reparable item is thus almost 

always unscheduled in the sense that the failure was 

unpredicted. Proactive maintenance is considered either 

preventive or predictive in nature, ranging from inspections, 

testing, or servicing to an overhaul or complete replacement. 

Preventive or scheduled maintenance can be based on 

calendar time, equipment operation time, or a planned cycle.  

Preventive maintenance may be either scheduled or 

unscheduled. In particular, it can be conducted at a predicted 
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point in time based on the condition of the equipment, the 

knowledge of which depends on the collection of data 

associated with potential faults and the deterioration of the 

equipment [4]. Conventional fault detection methods 

include built-in tests using in-equipment test algorithms, 

testing with external test benches, and fault isolation using 

failure modes, mechanisms, and effects analysis (FMMEA) 

and fault tree analysis (FTA). However, it is difficult to 

accurately diagnose faults in time using these strategies. As 

an alternative, condition-based maintenance (CBM) uses 

sensors mounted on or within the equipment to measure and 

analyze its status in real time to predict the remaining useful 

life (RUL). This allows more effective decisions to be made 

about when to conduct maintenance and optimizes 

maintenance plans [5]. Consequently, the system can 

produce more accurate predictions of impending failure 

based on the equipment condition data, resulting in 

dramatic cost-savings and improved weapons-system 

availability, ultimately benefiting warfare operations [4, 6]. 

 

1.2. Overview of Condition-based Maintenance (CBM) 

CBM generally consists of five steps, as shown in Fig. 1. 

In the first step, the necessary data for diagnostics is 

collected using sensors, thus diagnosing the condition of the 

equipment and identifying abnormal symptoms. This data 

is typically collected from elements of the equipment that 

are easily measured, such as vibrations, noise, temperature, 

and current/voltage. 

In the second step, the data is monitored to determine 

whether it is normal or not, and a comparative analysis is 

conducted against baseline data. If a potential fault is 

detected, the cause of the fault is determined, and it is 

classified according to the pre-defined severity of its impact 

on the system. 

In the third step, the probability of the fault that has 

occurred leading to a serious system failure in the future is 

calculated, and the RUL is predicted. A number of 

prediction models for RUL have been proposed [2], 

including data-driven statistical techniques using machine 

learning, or setting up a physics of failure (PoF) model that 

matches the characteristics of the equipment.  

Step 4 determines the optimal maintenance point based 

on the estimated RUL and then presents the results to the 

owners and technicians so that appropriate maintenance 

tasks can be scheduled and carried out. 

As a follow-up, Step 5 optimizes maintenance plans to 

reflect the CBM results and provides feedback for various 

logistics concerns, such as the organization of spare parts 

and maintenance personnel. 

A variety of engineering elements are involved in the 

employment of CBM. This includes hardware, such as 

embedded sensors used to obtain data and monitor the 

status of the equipment, and software as part of the 

decision-making system, including data analysis, the 

prediction of the RUL based on the failure model, analysis 

of the cause of failure linked to fault detection, and fault 

isolation. In addition, the CBM system needs to be 

underpinned by technical information that encompasses 

both the information in technical manuals regarding the 

maintenance of the weapons system in question, and 

operational information that dictates what maintenance is to 

be carried out in the event of a failure and how the 

equipment can be restored following proper procedures. 

This technical information needs to be organically 

integrated with the decision-making information deriving 

from the integrated hardware and software monitoring 

system, presented in real time, and coupled with diagnostic 

modules in an interactive electronic technical publication 

(IETP) based on S1000D, an international specification for 

technical publications. This CBM information should also 

interface with the inventory management system to increase 

the operational availability of the equipment and reduce the 

total cost of ownership. 

 

1.3. IETP Based on the S1000D Specification 

S1000D is an international specification for authoring 

and publishing technical documents that covers the planning, 

production, management, exchange, and publishing stages. In 

the 1970s, document standardization was introduced based 

on the aerospace and defense (ATA-100) specification used 

by the Air Transport Association (ASD) to resolve the 

different country-specific document standards that existed 

in the joint development of European fighter planes, and the 

S1000D later developed into an international standard. The 

S1000D utilizes a common source database to support a 

wide variety of display and publication types by separating 

the content from the format, allowing authors to focus on 

the former rather than format editing. It also has the 

advantage of being able to create a paper manual and an 

IETP using the same data. An IETP is user-interactive 

electronic technical publication that presents technical 

content using digital media and provides search, link, and 

multimedia functionalities [7]. Chapter 6 in the S1000D 

specification includes a functionality matrix for IETPs, 

which includes various diagnostic and prognostic modules 

that can work with CBM. Table 1 presents data modules 
 

Fig. 1. CBM process. 
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(DMs) that contain the diagnostics and prognostics for an 

IETP and describes each module. 

 

1.4. Diagnostic and Prognostic Data Modules in IETPs 

1.4.1. Diagnostics (user-defined data) 

This module is used to carry out fault isolation via pre-

defined text references. This employs a sentence format, 

using “if” phrases to choose an option. It uses a fault 

schema based on pre-defined FTA to structure fault 

information and is divided into four types of failure. Fig. 2 

presents the four fault types and the troubleshooting 

procedures presented in the IETP diagnostic module. 

 

1.4.2. Diagnostics (software data-driven) 

This is a decision-making module that utilizes software 

based on fault-isolation reasoning and logic engines. It 

provides the user with an appropriate starting point for 

maintenance to isolate faults and has an external software 

function. 

 

1.4.3. Dynamic diagnostics 

This involves fault detection or isolation using built-in 

test (BIT) or separate test devices. It has a direct diagnostic 

function that isolates fault information from the equipment 

rather than information entered by the user. 

 

1.4.4. Wire and fluid system tracing 

The IETP screen displays diagrams of specific functions 

and allows the user to select wiring, fluid, and pneumatic-

related wiring to track the flow from end to end. 

 

1.4.5. System simulation 

This module displays informal on the normal and 

abnormal operation of the system and the characteristics of 

various malfunction types in order to determine or 

reproduce a fault condition. System simulations allow the 

user to operate various switches such as those for pressure, 

valve position, temperature, voltage, and sensor input and 

make decisions by modeling system operations. 

 

1.4.6. Prognostics 

The process of estimating the future reliability and RUL 

of a system based on the variation in or degradation of its 

current state from its normal operating state. 

 

II. MAINTENANCE PLANNING USING CBM 

 

2.1. The Use of an IETP with CBM 

The prediction of the RUL of the equipment using 

prognostics should be effectively presented to the user. In 

fact, RUL is variable based on uncertain source data (i.e., 

that related to performance degradation and future predictions), 

so it must be expressed to the user quantitatively in real time 

online for more effective predictive maintenance [8]. Even 

for the same equipment, RUL may vary depending on 

the frequency of use and the environment. Therefore, 

maintenance intervals and policies should be adjusted 

accordingly. For this purpose, an interlocking concept is 

required to notify the user of the maintenance timeline and 

to reflect maintenance information such as maintenance 

intervals in the maintenance plan in a timely manner 

through a real-time connection with the IETP described in 

1.3. Fig. 3 displays the integration of a pre-set and 

prognostics-based maintenance schedule into maintenance 

planning and reducing maintenance costs by reducing the 

downtime of the equipment. 

 

2.2. Maintenance Interval Adjustment Based on 

Prognostics 

Mechanical equipment that is wearing out or degrading 

usually shows symptoms of imminent failure before the 

Table 1. IETP data modules for diagnostics and prognostics 

Data module Description 

1. Diagnostics User defined data driven 

2. Diganostics Software data driven 

3. Dynamic diagnostics BIT or external test bench 

4. Wire/fluid system tracing Fault related wiring and 

circuit tracing 

5. System simulation Reappearance or simulation 

of failure state 

6. Prognostics Predict remaining useful life 

 

Fig. 2. Troubleshooting process overview. 

 

Fig. 3. Integration of maintenance planning. 
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failure actually occurs. In fact, preventive maintenance in 

the field is typically performed regardless of the frequency 

of actual failure [9]. CBM is based on the premise that 

failures are not immediate, but gradual deterioration with 

accompanying symptoms. The potential functional P-F 

curve in Fig. 4 illustrates this process. 

The system starts to deteriorate at S, and the potential 

fault is detected at P with a prognostics algorithm. This 

does not indicate a functional failure but is rather the point 

at which the signs associated with the fault begin to be 

detected. The RUL is predicted from point P to point F, 

which is the actual function failure. Therefore, the 

appropriate point for predictive maintenance should be at 

any point between P and F depending on the degradation 

condition of the equipment. Most equipment is built with 

safety margins that allow for longer use than the actual 

design life, and under these conditions, when maintenance 

is performed at point M1, which is earlier than the design 

failure (i.e., the product life), the RUL will not be used as 

much as ‘a’. This increases the cost of the life cycle. If the 

maintenance is performed at M2, the equipment can be used 

for longer than the design life (i.e., period b in Fig. 4) and 

the cost of the life cycle will be lower. However, the 

probability of physical failure is dramatically higher, so the 

cost of downtime and additional costs associated with the 

actual functional failure must be taken into account. 

As the equipment moves closer to actual failure (i.e., it is 

used longer than the design failure point), more frequent 

monitoring and preventive maintenance of the equipment 

can effectively prolong the equipment’s life. On the other 

hand, the uncertainty of prognostics makes it difficult to set 

a preventive maintenance point, thus corrective maintenance 

at the point of failure may be more beneficial from a total 

cost-of-ownership perspective [10]. Even with the same 

equipment, the cost and time required for corrective 

maintenance (i.e., repair) differ from what is required for 

preventive maintenance (i.e., replacement). Therefore, the 

point of maintenance and the frequency of M during the 

overall life cycle of the equipment should be determined by 

considering availability and the total cost of ownership. 

III. OPERATIONAL AVAILABILITY 

ACCORDING TO  

THE MAINTENANCE INTERVAL 

 

Several studies have been conducted on how to set 

maintenance points and intervals based on the RUL 

predicted by prognostics to minimize the total cost of 

ownership, but there has been a lack of research on 

availability [10, 11]. Therefore, this study presents the 

optimal point of maintenance predicted by prognostics 

during the total operational period of a weapons system that 

maximizes operational availability.  

 

3.1. Model Formulation 

In the proposed model, the variables for two systems are 

set as shown in Table 2 to determine operational availability 

based on the maintenance interval. The total operating 

period of System A is 20 years and that of System B is 5 

years. The annual operating time is 6,000 hours for both 

systems, and they both contain electronic equipment with 

an exponential failure distribution, thus they have the same 

failure rate. Using Equation (1), this failure rate can be 

converted to a mean time between failures (MTBF) of 500 

hours, which can be used as a reference point for 

maintenance. 

 

Failure rate(λ) =
1

𝑀𝑇𝐵𝐹
 (1) 

 

The MTBF can be assumed to be the point of design 

failure, and if an actual failure occurs at this point, 

maintenance is performed. The elapsed maintenance time 

(i.e., the time to repair [TTR]) at this point is longer than 

the predicted maintenance time (i.e., the time to 

replacement [TTRM]) because it takes longer to isolate the 

failure, find the cause of the fault, and to acquire the 

resources needed to restore the equipment. In addition, 

maintenance performed in the event of actual failure can 

also lead to increased downtime for the entire system. 

Predictive maintenance prior to actual failure usually 

involves simple replacement tasks and, because no failure 

 

Fig. 4. P-F curve. 

Table 2. Variables in systems A and B 

Variable System “A” System “B” 

Total life cycle 20 years 5 years 

Annual operating hours 6,000 6,000 

Failure rate(λ) per 1 million hour 2,000 2,000 

Time to repair 3 h 3 h 

Time to replace 2 h 2 h 

Cost of repair $ 300 $ 300 

Cost of replacement $ 200 $ 200 
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has occurred, the effect on the entire system is minor. 

Therefore, in our model, the elapsed maintenance time and 

the predicted maintenance time are assumed to be 3 hours 

and 2 hours, respectively. The cost of maintenance in the 

event of actual failure should be taken into account not only 

in terms of the replacement of the item but also in terms of 

the cost required for further functional checks on the entire 

system. Therefore, the maintenance costs are assumed to be 

$300 and $200, respectively. 

 

3.2. Operational Availability and Maintenance Costs 

according to the Maintenance Interval 

Operational availability (Ao) can be expressed as a 

percentage of the total operating period (i.e., uptime + 

downtime) and system operating time (i.e., uptime only) 

[12, 13]. 

 

Ao(Operational availibility) =  
𝑈𝑝 𝑡𝑖𝑚𝑒

(𝑈𝑝 𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛 𝑡𝑖𝑚𝑒)
 

(2) 

 

Fig. 5 and 6 show the operational availability and 

maintenance costs of Systems A and B calculated in 

accordance with Equation (2). 

Initially, the longer the maintenance interval, the less 

frequent the maintenance and downtime of the total 

operating period, increasing the operational availability. 

The closer the point of maintenance is to the design failure 

time (i.e., the MTBF), the greater the RUL. However, 

because TTR is applied rather than TTRM when the 

maintenance point passes through the MTBF, the TTR 

increases rapidly despite the reduction in the number of 

maintenance tasks, thus the operational availability falls. 

From that point on, as the maintenance interval increases, 

the operational availability begins to increase slowly again. 

Similarly, longer maintenance intervals and fewer tasks 

reduce maintenance costs but, after MTBF, the total cost of 

maintenance increases because of the rapid increase in the 

costs of actual failure. The maintenance costs then begin to 

decrease again as the number of maintenance tasks 

decreases. Regardless of the total operating period, Systems 

A and B both illustrate that the longer the maintenance 

interval, the greater the operational availability and the 

lower the maintenance costs. 

 

3.3. An Analysis of the Effectiveness of the Two 

Systems in Terms of Increasing Operational 

Availability 

As Fig. 7 shows, the operational availability of Systems 

A and B differs as the maintenance interval increases up 

towards MTBF. When the two systems have the same 

maintenance interval, System B has a higher operational 

availability than System A. This means that a system with 

a shorter total operating period experiences a more 

beneficial effect in terms of operational availability when 

maintenance is performed predictably at a time before 

design failure. It also means that a system with a long 

operating period requires predictive maintenance at a time 

as close to design failure as possible to increase its 

operational availability. 

Consequently, while the optimal maintenance point 

should be determined through prognostics by considering 

the current state of the system and the operational 

environment, the total operating period of the system may 

also be an important factor. 
 

Fig. 5. Operational availability and maintenance costs for 

system A with change in maintenance intervals. 

 

 

Fig. 6. Operational availability and maintenance costs for system 

B with change in maintenance intervals. 

 

Fig. 7. Operational availability of systems A and B with 

change in maintenance intervals. 
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IV. CONCLUSION 

 

In this study, the association between the maintenance 

interval as determined using prognostics and the operational 

availability of the system to minimize downtime and cost 

and maximize operational availability is presented. Two 

systems with different total operating periods are analyzed 

for changes in operational availability and maintenance 

costs with changes in the maintenance interval. It is found 

that the longer the maintenance interval, the less frequent 

the maintenance tasks and downtime, and the greater the 

operational availability. Maintenance costs are also lower 

because the number of maintenance tasks decreases. More 

specifically, the operational availability and costs gradually 

increase and decrease, respectively, before MTBF. They 

then change drastically at the MTBF, before slowly 

increasing and decreasing again, respectively, at the same 

rate. It is also shown that the system with a shorter total 

operating period experiences a greater benefit from 

predictive maintenance in terms of increasing operational 

availability. It is proposed that the maintenance intervals 

predicted using prognostics and the established maintenance 

points need to be linked in an IETP based on the 

international technical publication standard S1000D in 

order to be effectively presented to users.  

The CBM proposed in this study is summarized in Fig. 8. 

                                                           

 
1 The process module is one of the data modules in IETP which described fault cause, isolation procedures, and corrective action. 

The CBM sensing module installed in the system is 

interlinked with the IETP’s diagnostics and prognostics 

modules, which communicate real-time maintenance-

related information to the user. The diagnostics module in 

the IETP interacts with the process module1 of the previously 

entered failure isolation procedures through maintenance 

task analysis and reliability-centered maintenance. The 

maintenance interval and decisions predicted through 

prognostics are reflected in the maintenance plan in the 

description module of the IETP, which is presented in the 

process module, allowing the user to conduct optimal 

maintenance. 
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